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Abstract

A WebViewis a web page automatically created from base data typically stored in a DBMS.

Given the multi-tiered architecture behind database-backed web servers, we have the option of

materializing a WebView inside the DBMS, at the web server, or not at all, always computing

it on the fly (virtual). Since WebViews must be up to date, materialized WebViews are im-

mediately refreshed with every update on the base data. In this paper we compare the three

materialization policies (materialized inside the DBMS, materialized at the web server and

virtual) analytically, through a detailed cost model, and quantitatively, through extensive ex-

periments on an implemented system. Our results indicate that materializing at the web server

is a more scalable solution and can facilitate an order of magnitude more users than the virtual

and materialized inside the DBMS policies, even under high update workloads.
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1 Introduction

There is no doubt that the World Wide Web has penetrated our lives. From reading the newspaper

and shopping online, to searching for the best prices on books or airplane tickets, the Web is

increasingly being used as the means to do everyday tasks. One common denominator for most

of these activities, is that the web pages we access aregenerated dynamically, usually due to

personalization[B+98]. Personalized web pages, that are created from base data, are one of the

many instances ofWebViews. In general, we define WebViews as web pages that are automatically

generated from base data, which are typically stored in a DBMS.

Similarly to traditional database views, WebViews can be in two forms:virtual or materialized.

Virtual WebViews are computed dynamically on-demand, whereas materialized WebViews are

precomputed. In the virtual case, the cost to compute the WebView increases the time it takes

the web server to service the access request, which we will refer to as thequery response time.

On the other hand, in the materialized case, every update to base data leads to an update to the

WebView, which increases the server load. Having a WebView materialized can potentially give

significantly lower query response times, compared to the virtual approach. However, it may also

lead to performance degradation, if the update workload is too high.

The decision whether to materialize a WebView or not, is similar to the problem of selecting

which views to materialize in a data warehouse [GM95, Gup97, Rou98], known as theview se-

lection problem. There are, however, many substantial differences. First of all, the multi-tiered

architecture of typical database-backed web servers raises the question ofwhereto materialize a

WebView. Secondly, updates are performedonlineat web servers, as opposed to data warehouses

which are usually off-line during updates. Thirdly, although both problems aim at decreasing query

response times, warehouse views are materialized in order to speed up the execution of a few, long

analytical (OLAP) queries, whereas WebViews are materialized to avoid repeated execution of

many small OLTP-style queries. Finally, the general case of the WebView materialization problem

has no constraints, whereas most view selection algorithms impose some resource constraints (e.g.

maximum storage or maintenance window limits [KR99]).

In the next section we briefly describe the architecture of typical database-backed web servers,

followed by some motivating examples of WebViews.

1.1 Architecture

When only servicing requests for static pages, the web server simply parses user requests, reads the

appropriate files from a disk and sends them to the clients that requested them (Figure 1a). Usually,

copies of the requested pages arecachedin an intermediate node, theproxy, or at the client site in

anticipation of future requests on the same pages. By replicating pages at the proxy or at the client,
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Figure 1: Multi-tier architecture for web servers

web cachingstrives to eliminate unnecessary data transmissions across the network [Mal98].

On the other hand, in order to serve dynamically generated pages (WebViews), the web server

has to be interfaced to a relational database (Figure 1b). In this case, after parsing the user requests,

the web server sends the corresponding query to the DBMS, often times via a middleware layer,

the application server [Gre99]. Then, the query results are send back to the web server, which

formats them in html and transmits the resulting web page to the client that requested it. Since

these web pages are generated dynamically, they are usually marked “non-cacheable” and thus

cannot be copied at the proxy or at the client.

Existing database-backed web servers, that publish dynamically generated pages, support either

virtual or periodically refreshed WebViews, depending on whether users can tolerate stale results

or not. For example, at the online auction site eBay (http://www.ebay.com ) we have both

types of WebViews. The summary pages for each auction category, which contain a list of all the

available items together with the highest bid values, are periodically refreshed every few hours.

This means that they can easily become out of date. On the other hand, the WebViews for the

individual items are virtual, and are always computed on the fly.

Given the multi-tiered architecture of web servers, there are two more WebView materialization

options that can guarantee fresh results and have not yet been used: materializinginside the DBMS

and materializingat the web server. For the former, we can use the DBMS to also store the

query results in the form ofmaterialized views[GM99], whereas for the latter, we can use the

web server’s disk to store WebViews as files [LR99]. By materializing inside the DBMS we avoid

expensive recomputation, whereas by materializing at the web server, we also eliminate the latency

of going to the DBMS every time, which could lead to DBMS overloading [Sin98]. However, in

order to guarantee freshness for both cases, the materialized WebViews need to be immediately

refreshed with every update on the base data.
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1.2 Motivation

There are many examples of WebViews other than personalized web pages. A search at an online

bookstore for books by a particular author returns a WebView that is generated dynamically; a

query on a cinema server generates a WebView that lists the current playing times for a particular

movie; a request for the current sports scores at a newspaper site returns a WebView which is

generated on the fly. Except for generating web pages as a result of a specific query, WebViews

can also be used to produce multiple versions (views) of the same data. An emerging need in this

area is for the ability tosupport multiple web devices, especially browsers with limited display or

bandwidth capabilities, such as cellular phones or networked PDAs.

Although there are a few web servers that support arbitrary queries on their base data, most

web applications “publish” a relatively small set ofpredefinedor parameterizedWebViews, which

are to be generated automatically through DBMS queries. A weather web server, for example,

would most probably report current weather information and forecast for an area based on a ZIP

code, or a city/state combination. Given that weather web pages can be very popular and that the

update rate for weather information is not high, materializing such WebViews would most likely

improve performance. In general, WebViews that are a result of arbitrary queries, are not expected

to be shared, and hence need not be considered for materialization. This category would include,

for example, WebViews that were generated as a result of a query on a search engine. On the other

hand, predefined or parameterized WebViews can be popular and thus should be considered for

materialization in order to improve the web server’s performance.

Personalized WebViews can also be considered for materialization, if first they are decomposed

into ahierarchyof WebViews. Take for example a personalized newspaper. It can have a selection

of news categories (only metro, international news), a localized weather forecast and a horoscope

page (for Scorpio). Although this particular combination might be unique or unpopular, if we

decompose the page into four WebViews, one for metro news, one for international news, one for

the weather and one for the horoscope, then these WebViews can be accessed frequently enough

to merit materialization.

Stock server example

One motivating example, which we will use throughout the paper, is that of a stock web server.

Such a system can have three types of WebViews: summary pages, individual company pages

and personalized portfolio pages. Summary pages list companies either by industry group (e.g.

consumer goods, financial, transportation, utilities) or by activity (e.g. most active, biggest gainers,

biggest losers). Individual company pages have the latest stock price, graphs at various time-scales

(from intra-day to multi-year charts) and pointers to news articles about the company. Finally,
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personalized portfolio pages are expected to have a list of the stocks that one owns, along with

calculations for their current value and profits/losses, based on the latest stock prices.

The aforementioned WebViews display a wide variety of access and update patterns. For ex-

ample, the summary pages based on industry groups are typically less update-intensive than the

summary pages based on stock activity (e.g. biggest gainers). Even WebViews of the same cate-

gory can exhibit substantially different access or update characteristics. For example, individual

company WebViews are expected to follow the popularity of the company: heavily traded stocks

will correspond to WebViews that are accessed frequently and are also update-intensive.

Existing stock web servers typically generate all of their WebViews on the fly, which results

in really poor response times at peak hours. Materialization can improve performance dramatical-

ly by precomputing popular WebViews and keeping them up to date in the background, instead

of repeating their generation with every request. Although the personalized portfolio WebViews

are obviously too specific to be considered for materialization, both the WebViews for individual

companies and the summary WebViews are candidates for materialization, even under high update

rates. The reason for this is that even if, for example, a stock price is updated 10 times a second, it

is beneficial to precompute WebViews that are based on it, if they are accessed more often (e.g. 20

times a second).

1.3 Contributions

In this paper we consider the full spectrum of materialization choices for WebViews in a database-

backed web server. We compare them analytically using a detailed cost model that accounts for

both the inherent parallelism in multitasking systems and also for the fact that updates on the base

data are to be done concurrently with the accesses. We have implemented all flavors of WebView

materialization on an industrial strength database-backed web server (WebMat) and ran extensive

experiments. We then compared the various materialization choices quantitatively. Our results

showed that the policy of materializing at the web server scales substantially better than the other

two, and that the virtual policy is better than materializing inside the DBMS, except for a very

limited number of cases.

The rest of the paper is organized as follows. In the next section we give an overview of

related work. Section 3 presents the three materialization policies and compares them analytically.

In Section 4 we discuss the results of our experiments, and in the last section we present our

conclusions.
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2 Related Work

As we mentioned earlier, although the decision whether to materialize a WebView or not, is similar

to the view selection problem in data warehouses, there are a few major differences. The most

important ones are the multi-tiered architecture of database-backed web servers, which raises the

question ofwhere to materialize, and the need to perform updates at the web serveronline, as

opposed to data warehouses in which updates are usually off-line. WebView materialization is also

different from the traditional web caching techniques, since it is targeted at dynamically generated

pages and guarantees that the WebView is always up to date. Finally, WebView materializaton is

performed at the webserver, whereas web caching is done at theclientsor at proxies.

There is some recent work done on cachingdynamic web data. The Active Cachescheme

[CZB98] supports caching of dynamic web objects at proxies. This is done by allowing servers

to supply cache applets to be executed on cache hits at the proxies without contacting the server.

In [IC97] the authors present theDynamicWeb cachewhich has the ability to cache dynamic web

pages at the server the first time they are created, and in [LISD99] they provide an API which

allows application programs to explicitly add, delete and update cached data. Finally, in [CID99]

the authors present an algorithm to identify which cached objects are affected by a change to

the underlying data. Unfortunately, none of the aforementioned papers deals with theselection

problem: identifying which dynamic data to cache and which not to cache.

Although there is a lot of recent literature on building and maintaining web sites [CFP99,

AMM98, FFK+98, FLM98], there is little work on the performance issues associated with Web-

Views. [MMM98] provide an algorithm to support client-side materialization of WebViews, and

[Sin98, AMR+98] present algorithms to maintain them incrementally. In [LR99], we presented

preliminary results that materializing WebViews at the web server is often times better than com-

puting them on the fly. However, we did not consider materialization inside the DBMS, as we do

in this paper.

[FLSY99] consider the problem of automatically optimizing the run-time management of declar-

atively specified web sites. Although they report considerable speedup rates from view material-

ization, they dismiss it on the grounds of space overhead. We believe that storage overhead is not

an issue when it comes to web servers since it refers to disk space and not main memory.

Finally, by materializing WebViews, we allow the web server to scale up well under peak

workloads, by serving slightly stale data. This is one way of performingweb content adaptation

to improve server overload behavior. [AB99] propose to resolve the overload problem by adapting

delivered content to load conditions.
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3 WebView materialization strategies

In this section we first give more details about the architecture of theWebMatsystem, which

is our implementation of a database-backed web server that can support all flavors of WebView

materialization. In section 3.2 we explain the derivation path of WebViews and, then, present the

three WebView materialization strategies, along with a detailed cost model. In section 3.6 we

formulate the WebView selection problem, and in section 3.7 we combine the individual access

& update cost formulas from all the policies. Finally, in section 3.8 we measure the WebView

staleness in all policies.

���
���
���

���
���
���

requests
access

Web server

���
���
���
���

DBMS Updater
updates

Figure 2: WebMat System Overview

3.1 System Overview

The WebMat system has three software components: theweb server, theDBMSand theupdater

(Figure 2). Each of them typically spawns a lot of processes or threads that run in parallel.

The web server services the access requests. Depending on the materialization policy, it may

execute a query at the DBMS or read a file from disk. The DBMS computes answers to queries,

or applies updates to tables. Finally, the updater runs in the background and services the update

stream. It supplies the DBMS with updates to the base tables and may also cause the refresh of

derived data inside the DBMS, or write the new version of a WebView to disk, by executing the

appropriate query1 at the DBMS, formatting the results in html, and saving them to a file.

One important property of the WebMat system istransparency: clients sending access requests

to the web server do not have to know what kind of materialization a WebView has, if any.

1It should be noted that the query is exactly the same as the one used by the web server to generate virtual WebViews
and, as such, we do not need to duplicate any DBMS functionality at the updater.
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3.2 WebView Derivation Path

Before describing the materialization policies in detail, we give an overview of the derivation path

for each WebView. First, a set of base tables, thesources, is queried, and, then, the query results,

theview, are formatted into an html page, theWebView(Figure 3).

base data
(sources)

-
query

query results
(view)

-
formatting

html page
(WebView)

Figure 3: WebView derivation path

Table 1 illustrates how WebView derivation works for the summary pages from the stock server

example. In order, for example, to generate the WebView for the biggest losers, we start from

the base table with all the stocks (the source), and issue a query to get the ones with the biggest

decrease (the view) and, then, format the query results into html (the WebView).

name curr prev diff volume

AMZN 76 79 -3 8.06M
AOL 111 115 -4 13.29M
EBAY 138 141 -3 2.16M
IBM 107 107 0 8.81M
IFMX 6 6 0 1.42M
LU 60 61 -1 10.98M
MSFT 88 90 -2 23.49M
ORCL 45 46 -1 9.19M
T 43 44 -1 5.97M
YHOO 171 173 -2 7.10M

name curr prev diff

AOL 111 115 -4
EBAY 138 141 -3
AMZN 76 79 -3

<html><head>
<title>Biggest Losers</title>
</head><body>
<h1>Biggest Losers</h1><p>

<table>
<tr><td> name <td> curr <td> diff
<tr><td> AOL <td> 111 <td> -4
<tr><td> EBAY <td> 141 <td> -3
<tr><td> AMZN <td> 76 <td> -3
</table>

Last update on Oct 15, 13:16:05
</body></html>

(a) source (b) view (c) WebView

Table 1: Derivation path for the stock server example

We will usesi to denote a source table, andSi = fsi1; si2 ; : : : ; sing for a set of sources. Simi-

larly, we will usevi for a view, andVi = fvi1; vi2 ; : : : ; ving for a set of views. Finally, we will use

wi for a WebView, andWi = fwi1; wi2 ; : : : ; wing for a set of WebViews.

Formally, if Si is the set of sources, we define thequery operatorQ, such thatQ(Si) =

vi, wherevi is the view corresponding to the query results. Moreover, we define theformatting

operatorF , such thatF(vi) = wi, wherewi is a WebView, the result of formatting viewvi into

html. If we want to associate a viewvi with the set of sources that generated it, we use the inverse

query operatorQ�1: vi = Q�1(Si). Similarly, to associate a WebView with the view it was

generated from, we use the inverse formatting operatorF�1: wi = F�1(Vi). Finally, since there
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can be a hierarchy of views, we extendQ to take as argument other views, if necessary. So, for

example, in the general case we haveQ(Si) = v1i , Q(v1i ) = v2i , . . . ,Q(vn�1i ) = vni , wi = F(vni ).

If n = 1, we have aflat schema.

All WebViews have the same derivation path regardless of the materialization policy. The only

difference among the three policies is that the materialized strategies choose to cache (and keep

consistent) parts of the intermediate results, whereas in the virtual strategy everything is computed

from scratch. In the next sections, we describe the three policies in detail.

3.3 Virtual Policy

In the virtual policy, everything is computed on the fly. To produce a WebViewwi we would need

to query the DBMS and format the results in html. Therefore, the cost of accessing WebViewwi

would be:

Avirt(wi) = Cquery(Si)| {z }
@dbms

+Cformat(vi)| {z }
@web server

(1)

wherevi = F�1(wi) is the view from which the WebViewwi is generated,Si = Q�1(vi) is the set

of sources needed to answer the query,Cquery(Si) is the cost to query the sources, and,Cformat(vi) is

the cost of formatting viewvi into html. We notice that the query part of the access cost is executed

at the DBMS, whereas the formatting part is performed at the web server.

Since nothing is being cached under the virtual policy, whenever there is an update on the base

tables that produce the WebView, we only need to update the base tables. Therefore, the cost of an

update to sourcesj is:

Uvirt(sj) = Cupdate(sj)| {z }
@dbms

(2)

wheresj is one of the base tables that are used to produce WebViewwi, or sj 2 Q�1(F�1(wi)),

andCupdate(si) is the cost to update tablesj.

We realize that the formatting of the query results during accesses can be donein parallel with

the updating of the sources, as they are done at different processes (the former is being done at the

web server, while the latter is done at the DBMS). However, we also realize that there is a possible

source of data contention between the query phase during the accesses and the updates, since they

both have to be done at the DBMS.
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3.4 Materializing inside the DBMS

When materializing inside the DBMS (themat-db policy) we save the results of the query that

is used to generate the WebView. To produce the WebView, we would need to access the stored

results and format them in html. Therefore, the access cost for WebViewwi in this case is:

Amat�db(wi) = Caccess(vi)| {z }
@dbms

+Cformat(vi)| {z }
@web server

(3)

wherevi = F�1(wi) is the view from which the WebViewwi is generated, andCaccess(vi) is the

cost of accessing the materialized viewvi. We notice that, similarly to the virtual policy, the first

part of the access cost is executed at the DBMS, whereas the formatting part is performed at the

web server.

Since we assumed a no staleness requirement, the stored query results need to be kept up to

date all the time. This leads to an immediate refresh of the materialized views inside the DBMS

with every update to the base tables they are derived from. So the cost of an update to sourcesj is:

Umat�db(sj) = Cupdate(sj) +
X

vk2Vj

Cupdate(vk)

| {z }
@dbms

(4)

whereCupdate(sj) is the cost to update sourcesj, Vj is the set of materialized views that are

affected by the update to tablesj, or Vj = fvmjsj 2 Q�1(vm)g, and,Cupdate(vk) is the cost to

update the materialized viewvk. There are two options for updating the materialized viewvk:

incremental refreshandrecomputation. For the incremental refresh case, the cost to updatevk is

simply:

Cupdate(vk) = Crefresh(vk) (5)

whereas in the recomputation case, the cost to updatevk is:

Cupdate(vk) = Cquery(Sk) + Cstore(vk) (6)

whereSk = Q�1(vk) is the set of sources needed to answer the query that corresponds to view

vk, andCstore(vk) is the cost to store the query results inside the DBMS, which includes the cost

to delete the previous “version” ofvk. Although the incremental refresh is expected to have the

lowest cost, there are classes of views which cannot be updated incrementally and thus must be

recomputed every time.

We realize that, like the virtual case, the formatting of the query results during accesses can

be done in parallel with the updating of the sources and the materialized views, as they are done
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at different processes (the former is being done at the web server, while the latter is done at the

DBMS). However, there is a possible source of data contention between the queries executed

during the servicing of the access requests and the updates of the sources or of the materialized

views, since they are all done at the DBMS.

3.5 Materializing at the web server

When we materialize a WebView at the web server (themat-web policy) we do not need to query

the DBMS or perform any further formatting in order to satisfy user requests. We simply have to

read it from disk, which makes the cost of accessing a WebViewwi rather small:

Amat�web(wi) = Cread(wi)| {z }
@web server

(7)

whereCread(wi) is the cost to readwi which has been saved as a file to disk.

Because of the no staleness requirement, the materialized WebView needs to be kept up to

date all the time. This means that on every update to one of the base tablessj that produce the

WebView, we have to regenerate the WebView from scratch and save it as a file for the web server

to read. So the cost of an update to sourcesj is:

Umat�web(sj) = Cupdate(sj)| {z }
@dbms

+
X

vk2Vj

[ Cquery(Sk)| {z }
@dbms

+Cformat(vk) + Cwrite(wk)| {z }
@updater

] (8)

whereVj is the set of views that are affected by the update to tablesj, orVj = fvmjsj 2 Q�1(vm)g,
vk = F�1(wk) is the view that generates WebViewwk, Sk = Q�1(vk) is the set of sources needed

to answer the query that corresponds to viewvk, andCwrite(wk) is the cost to write the WebView

wk to disk.

We realize that the handling of user requests and the updates can be done entirely in parallel.

Moreover, parts of the execution of an update can also be done in parallel, since the work is

distributed among the DBMS and the updater processes. However, there is some data contention,

mainly between theread(wi) and thewrite(wi) operations which both involve the web server’s

disk.

3.6 The selection problem

The choice of materialization policy for each WebView has a big impact on the overall perfor-

mance. For example, a WebView that is costly to compute and has very few updates, should be

materialized to speed up access requests. On the other hand, a WebView that can be computed fast
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and has much more updates than accesses, should not be materialized, since materialization would

mean more work than necessary. We define the WebView selection problem as:

For every WebView at the server, select the materialization strategy (virtual, material-

ized inside the DBMS, materialized at the web server), whichminimizes the average

query response timeon the clients. We assume that there is no storage constraint.

The assumption that there is no storage constraint is not unrealistic, since storage means disk space

(and not main memory) for both materialization policies (inside the DBMS or at the web server)

and also WebViews are expected to be relatively small. With the average web page at 30KB

[AW97], a single 50GB hard disk for example could hold approximately 1.5 million pages. In this

paper, we also assume a no staleness requirement, i.e. the WebViews must always be up to date.

3.7 Cost aggregation

In order to solve the WebView selection problem, except for the cost functions presented in Sec-

tions 3.3 - 3.5, we will need to aggregate the access and update costs, taking into account the

frequencies with which they occur. Unlike traditional materialized view applications, updates in a

database-backed web server areonline, executing in the background while the server is processing

access requests. However, since the objective of the WebView selection problem is to minimize

theaverage query response time, we expect the aggregate cost formulas to be more sensitive to the

access costs than the update costs.

Let fa(wi) be theaccess frequencyfor WebViewwi, andfu(sj) be thefrequency of updates

for sourcesj, from whichwi is derived. IfW is the set of all WebViews at the web server, we

want to partitionW into three disjoint setsWvirt, Wmat�db andWmat�web, such that the average

query response time is minimized.Wvirt would contain all the WebViews under the virtual policy,

Wmat�db would contain all the WebViews materialized inside the DBMS, and,Wmat�web would

contain all the WebViews materialized at the web server. Finally, letSvirt be the set of sources

that have to be queried to generate the WebViews inWvirt, or Svirt = Q�1(F�1(Wvirt)), and

similarly Smat�db the set of sources that have to be queried to generate the WebViews inWmat�db,

andSmat�web the set of sources needed for generatingWmat�web.

Since we are minimizing the average query response time, in order to calculate the total cost

we simply need to identify for each policy how much the concurrent updates influence the access

requests. Table 2 lists which subsystems are involved when servicing (a) access or (b) update

operations under each policy. For example, when a WebView is accessed under thevirt policy,

both the web server and the DBMS are involved (Table 2a, first line). The same holds for themat-

db policy (Table 2a, second line), whereas for accessing WebViews under themat-web policy

only the web server is required (Table 2a, third line). On the other hand, the DBMS is required for
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mat-db
p p

mat-web
p

web server DBMS updater

virt
p

mat-db
p

mat-web
p p

(a) Accesses (b) Updates

Table 2: Work distribution among processes for each policy

servicing updates under all three policies (Table 2b), whereas the updater processes are involved

only under themat-web policy (Table 2b, third line). We clearly see that the DBMS is used at all

times, except for when accessing a WebView which is materialized at the web server. This means

that the database server can become the bottleneck of the system, and thus the load on the DBMS

is expected to dominate the average query response time.

Let TC be the total cost for servicing access requests, which is the amount that we want to

minimize. Obviously,TC will include the access costs for the WebViews in our system, but it must

also include the influence to the access costs from the updates that are executed concurrently. As

we mentioned earlier, the DBMS is expected to be the bottleneck of the system, so we isolate from

the update costs the parts that are executed in the DBMS. Formally, we use�dbms(C) to select from

costC the part that is executed in the DBMS. From Eq. 2, we have that�dbms(Uvirt) = Uvirt, and

from Eq. 4, �dbms(Umat�db) = Umat�db. To get�dbms(Umat�web) from Eq. 8 we simply ignore the

parts that are executed in the updater processes (third term). Putting it all together, we have that:

TC =
X

wi2Wvirt

fa(wi)� Avirt(wi) +
X

si2Svirt

fu(si)� Uvirt(si)

+
X

wj2Wmat�db

fa(wj)� Amat�db(wj) +
X

sj2Smat�db

fu(sj)� Umat�db(sj) (9)

+
X

wk2Wmat�web

fa(wk)� Amat�web(wk) +
X

sk2Smat�web

b� fu(sk)� �dbms(Umat�web(sk))

whereb = 0, if Wvirt = Wmat�db = ;, andb = 1, otherwise. The meaning ofb is that when we

only have WebViews materialized at the web server, the cost of updating them in the background

using the DBMS does not have a direct impact on the average query response time. However, when

we have WebViews that are either virtual or materialized inside the DBMS, the cost of updating

themat-web WebViews in the background will influence the average query response time of the

virt andmat-db WebViews.
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3.8 Staleness calculation

Although, at first sight, the virtual policy would seem to provide the most up to date responses, this

misconception is quickly cleared away if we consider the basis of our freshness measurement to be

the time of thereply instead of the request. Using the time of the reply is more meaningful, since

that is the time when the users get to access the answer to their query. We callminimum staleness,

MS, the time it takes for an update to propagate to the user, or, in other words, the time between

the reply to a WebView request and the time of the last database update that affected this reply. All

points of time refer to the web server in order to avoid network delays, so the time of the reply is

actually the time the web server sends the reply back to the user and not the time the user receives

the reply.

request reply

MS

format
source
update

time

results

query sources

replyrequest

format
resultsmat view

access

update
mat view

MS

update

time

source

request reply

source
update R

time
MS

format
results

query sources W

a)virt policy b)mat-db policy c) mat-web policy

Figure 4: Staleness measurement

Figure 4(a) illustrates the minimum staleness under the virtual policy (virt ), which is

MSvirt = Tupdate(sj)| {z }
before request

+Tquery(Si) + Tformat(vi)| {z }
during request

For the materialized inside the DBMS policy (mat-db ), Figure 4(b) gives us

MSmat�db = Tupdate(sj) + Trefresh(vi)| {z }
before request

+Taccess(vi) + Tformat(vi)| {z }
during request

Finally, Figure 4(c), illustrates that the minimum staleness when materializing a WebView at the

web server (mat-web policy) is

MSmat�web = Tupdate(sj) + Tquery(Si) + Tformat(vi) + Twrite(wi)| {z }
before request

+ Tread(wi)| {z }
during request
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By comparing the three minimum staleness formulas, we get that

MSmat�db �MSvirt = Trefresh(vi) + Taccess(vi)� Tquery(Si)

MSmat�web �MSvirt = Twrite(wi) + Tread(wi)

Under light load conditions, we expect to have

0 � (Twrite(wi) + Tread(wi)) � (Trefresh(vi) + Taccess(vi)� Tquery(Si))

In other words, in this case the virtual policy will have slightly lower minimum staleness than the

other two policies:MSvirt � MSmat�web � MSmat�db. However, this will not hold when the load

at the server increases. As we will see later in the experiments section, all policies do not scale up

in the same way. Specifically, themat-web policy can support at least 10 times more requests

than the other two policies (virt , mat-db ), since it allows for more parallelism between the

access and update requests. This means that as the load at the system increases, thevirt and

mat-db policies will reach the heavy load mark much faster than themat-web policy. After that

point, the time to service access requests increases dramatically and affects the minimum staleness

(Figure 5). In general, although under light server loads, the minimum staleness is about the same

for all policies, as the load increases in the server, themat-web policy is expected to have the

least minimum staleness, since it scales better.

mat-web
virtualmat-db

Server Load

Mi
nim

um
 S

tal
en

es
s

Figure 5: Minimum staleness under heavy loads

3.9 Discussion

As mentioned during the presentation of the materialization strategies, there is a lot ofparallelism

in a database-backed web server. For example, the formatting of the query results at the web

server can be done in parallel with the updates at the DBMS. In a single-processor machine, this

parallelism means that we are able to recover idle time due to I/O blocking or data contention by

performing other useful tasks.
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Furthermore, we expect that the virtual and the materialized inside the DBMS policies make

the database server the bottleneck, since every request (accesses and updates alike) has to query the

DBMS. For accesses, this means that each user request has to go through an extra layer of software,

communicating data back and forth. On the other hand, the materialized at the web server policy

breaks this bottleneck, by performing a lot of the work in the background (the updater processes)

and relying on the web server alone to service user requests. This was verified by our experiments,

which we present in the next section.

4 Experiments

In this section we present a summary of the results of our experiments on the WebMat system. Af-

ter a quick description of the experimental setup, we investigate how the three different WebView

materialization policies perform when we scale up various parameters of the workload. Specifical-

ly, we present results for scaling the access request rate, the update rate, the number of views in

the system, and the size of the WebViews.

4.1 Setup

As mentioned in Section 3.1, the WebMat system consists of three software components: the web

server, the DBMS and the updater. We used the Apache2 web server, version 1.3.6 and the Informix

Dynamic Server with Universal Data Option ver. 9.14. The updater was written in Perl.

Web server extensions In order for the web server to generate pages dynamically, we need to

execute scripts that communicate with the DBMS. To avoid the overhead of creating a new unix

process with every access request (which is what happens with cgi-bin), we used themod perl

package ver. 1.19 on top of the Apache web server. This way, the handling of the WebView access

requests was done exclusively from within the apache processes, resulting in an order of magnitude

improvement in performance [LR00]. We used perl DBI (version 1.08) and the Informix DBD

(version 0.60) to communicate to the DBMS, from within Apache, as well as from the updater

processes. We kept the connections to the databasepersistent, so that we did not have to establish

a new connection with every request, which gave us another order of magnitude improvement in

performance. Finally, we also instrumented Apache to measure the time it takes for the server to

service each query request. Note that we made our measurements of query response time at the

server, thus eliminating any network latency.

2Apache is the most popular web server according to the February 2000 Netcraft Web Server Survey, with a 58%
market share. The survey is available online athttp://www.netcraft.com/survey/
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Updater We had 10 updater processes running in the background. Informix does not have native

support for materialized views, so for themat-db policy, we stored the materialized views as

tables, and had the updater issue an update SQL statement whenever there was an update on the

base data. It should be noted that most DBMS products that support materialized views, also store

them as relational tables (e.g. Oracle [BDD+98]).

Hardware We used a SUN UltraSparc-5 with 320MB of memory, a 3.6GB Seagate Medalist

disk as our server, and, a cluster of 22 SUN Ultra-1 workstations as clients. All of the machines

were on the same local area network and were running Solaris 2.6.

Workload Unless noted otherwise, in each experiment we had 1000 WebViews that were defined

over 10 source tables (100 per table). The queries corresponding to the WebViews were selections

on an indexed attribute, which returned 10 tuples each. The WebView size in html was 3KB. Each

experiment was executed for 10 minutes. Finally, the update operations were changing the value

of one attribute at the source table.

4.2 Scaling up the access rate

In this group of experiments we increased the access request rate from 10 requests per second

up to 100 requests per second and measured the average query response time under the three

different materialization policies: virtual (virt ), materialized inside the DBMS (mat-db ) and

materialized at the web server (mat-web ).

A load of 10 access requests per second should correspond to a “moderate” load at the server of

about 0.8 million hits per day. On the other hand, 100 requests per second should correspond to a

rather “heavy” load at the web server of about 8.6 million hits per day. For comparison, our depart-

ment’s web server (http://www.cs.umd.edu ) gets about 95,000 requests per day or 1.1 request

per second, whereas the widely popular online auction site eBay (http://www.ebay.com ) gets

about 50 million hits per day or 580 requests per second on average3 (October 1999).

We run two sets of experiments: one with no updates, and one with 5 updates/sec. The access

and the update requests were distributed uniformly over all 1000 WebViews. Each experiment was

scheduled to run for 10 minutes and was repeated three times: in the first one, all WebViews were

kept virtual, in the second one all were materialized inside the DBMS and in the last one they

were materialized at the web server. We report the average query response times per WebView

as they were measured at the web server. At the 95% confidence level, the margin of error was
3Of course, eBay does not have just one plain SUN UltraSparc-5 to serve all these hits, but, rather, they rely on

many machines. A simple search on the ebay.com domain, lists 478 machines, out of which 35 have the word “cgi”
as part of their name and are most probably used to serve dynamically generated web pages.
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0.14% - 2.7% for thevirt policy, 0.17% - 3.16% for themat-db policy and 1.3% - 6.5% for the

mat-web policy.
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Figure 6: Scaling up the access rate

Figure 6a depicts the results of our experiments with no updates and Figure 6b when we have

5 updates/sec. We immediately notice that themat-web policy has average query response times

that are consistently at least an order of magnitude (10 - 230 times) less than those of thevirt

or mat-db policies. This was expected, as themat-web policy, in order to service a request,

simply reads a file from disk (even if the updater process is running in the background, constantly

updating this file), whereas under thevirt , mat-db policies we have to compute a query at the

DBMS for every request (even if the WebView is materialized inside the DBMS, we still have to

access it). Furthermore, since the web processes are “lighter” than the processes in the DBMS, the

mat-web policy scales better than the other two.

Figure 6a also shows that thevirt and themat-db policies have similar query response

times. This is explained by the fact that although themat-db policy had precomputed the query

results, the cost of accessing them is about the same as the cost of generating them from scratch,

using thevirt policy. This will also be true for other DBMS products with native support for

materialized views, if they use relational tables to store the materialized views. However, when

we also have updates (Figure 6b), except for updating the source tables, themat-db policy has

to refresh the materialized views as well. This means that the DBMS (which is the bottleneck)

will become significantly more loaded, which results in a substantial drop in performance for the

mat-db policy, compared to thevirt policy. For example at 25 requests/sec, although with no

updates themat-db policy is 9.69% faster than thevirt policy, when we have 5 updates/sec,

thevirt policy is 63.53% faster than themat-db policy.
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4.3 Scaling up the update rate

In this group of experiments we increased the update rate up to 25 updates/sec, while the access

rate was constant at 25 requests/sec. Each experiment was scheduled to run for 10 minutes and was

repeated three times, one for each policy (virt , mat-db andmat-web ). We report the average

query response times per WebView in Figure 7.
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Figure 7: Scaling up the update rate

Our first observation is that the average query response time remains practically unchanged for

themat-web policy despite the updates. The reason behind this is that, as predicted by the total

cost formula of Eq. 9, the cost of the accesses under themat-web policy is not affected by the

updates, since they are done at the background by another process, the updater.

The second observation is that themat-db policy is performing significantly worse than the

virt policy in the presence of updates. This is explained by the fact that updates under themat-

db policy lead to extra work at the DBMS in order for the materialized views to be kept up to date.

On the other hand, since the queries are not expensive, the gain from precomputing is negligible.

As a result, thevirt policy gives 56% - 93% faster query response times compared to themat-

db policy in the presence of updates. In the next section, we present an experiment with expensive

queries.

4.4 Scaling up the number of WebViews

In this group of experiments we varied the number of WebViews in the system. We ran three

sets of experiments. In the first one we had only 100 WebViews, in the second one we had 1000
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WebViews and in the last one we had 2000 WebViews. In all experiments, the aggregate access rate

was 25 requests / sec. Each experiment ran for 20 minutes and was repeated three times, one for

each policy (virt , mat-db andmat-web ). In all experiments, we modified the view definition

for 10% of the WebViews: instead of a simple selection, they were defined as a join on the index

attribute between two tables, resulting in a more expensive generation query.
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Figure 8: Scaling up the number of WebViews

Figure 8a depicts the results of our experiments with no updates and Figure 8b when we have

5 updates/sec. In the no update case, when the number of WebViews is small, thevirt policy

performs substantially worse than themat-db policy (3.5 times worse for 100 WebViews, and

21% worse for 1000 WebViews), since the time to compute the WebView generation query is not

negligible. However, as the number of views increases, so does data contention. Themat-db

policy will exhibit more data contention than thevirt policy, because the number of materialized

views is much higher than the number of source tables. Eventually (when the number of WebViews

is 2000), the performance of thevirt policy will be better than that of themat-db policy, even

for expensive queries. If we consider the case with 5 updates/sec, the crossover point where the

virt policy outperforms themat-db policy is even earlier, at 1000 WebViews, whereas for 2000

WebViews, thevirt policy gives 43% faster query response times than themat-db policy.

4.5 Scaling up the WebView size

The size of a WebView can increase in two ways: (a) by increasing the number of tuples in each

view, or (b) by increasing the size of the resulting html page. We investigated both options in this

group of experiments.
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In the first set of experiments, we increased the number of tuples in a WebView from 10 to 20.

The access rate was 25 requests/sec, and we also had 5 updates/sec. The experiment run for 10

minutes, and was repeated 3 times, one for each policy. We report the average query response time

per WebView in Figure 9a. We can see that although the response time increases for thevirt

andmat-db policies, it does not double: there is a 50% increase for thevirt policy and a 15%

increase for themat-db policy. Moreover, the response time for themat-web policy remains

virtually unaffected, since all the “extra work” generated from the increase in the view size is

executed at the updater process and does not have a direct effect on the web server.
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Figure 9: Scaling up the WebView size

In the second set of experiments, we increased the size of the html page (WebView) from 3KB

to 30KB. The access rate was 25 requests/sec, and we also had 5 updates/sec. The experiment run

for 10 minutes, and was repeated 3 times, one for each policy. We report the average query response

time per WebView in Figure 9b. Again we see that the response times for thevirt andmat-db

policies increase. However, unlike the previous experiment, in this case, the response time for the

mat-web policy increases significantly. This is explained by the fact that a big change in the

WebView size (from 3KB to 30KB) is actually affecting the web server, since it will have to spend

more time reading the files from disk.

4.6 Zipf vs uniform access distribution

In all of our experiments, we used a uniform distribution for the access rates. That was because

we wanted the resulting workload to be more demanding on the web server than if we used a Zipf

distribution. We ran two sets of experiments where the access rates followed a Zipf distribution

with a theta of 0.7 as suggested in [BCF+99] and compared them against the uniform distribution
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Figure 10: Zipf vs uniform access distribution

case. The aggregate access rate was in both cases 25 requests / sec.

Figure 10a depicts the results of our experiments for no updates, whereas Figure 10b for 5

updates/sec. We see that the query response times are significantly lower (11% - 23%) under the

zipf distribution for all policies, as expected. This is due to the fact that there is more reference

locality in the Zipf workload than in the uniform case. Therefore, by using a uniform distribution

in our experiments, we exposed the WebMat system to a “worst case” scenario for the access

requests.

4.7 Verifying the cost model

In the final set of experiments we tried to verify the total cost formula from Eq. 9. We had 1000

WebViews (500 of them were kept virtual and 500 were materialized under themat-web policy),

with an aggregate access rate of 25 requests / sec. We ran four experiments. In the first one, we

had no updates. In the second experiment, updates were made only to the 500virt WebViews,

at an aggegate rate of 5 updates / sec. In the third experiment, updates were made only to the 500

mat-web WebViews, at a rate of 5 updates / sec. Finally, in the last experiment, both types of

WebViews had updates, with an aggregate rate of 5 updates / sec.

Figure 11 depicts the results of our experiments. For each experiment, we report the average

query response time of WebViews under thevirt policy (left, light-colored column) and the

average query response time format-web WebViews (right, dark-colored column). As we showed

in section 4.3, the average query response time for WebViews under themat-web policy changes

very little with increases in the update workload, which agrees with the total cost formula and the

results from this experiment. Forvirt WebViews however, there is a significant increase in the
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Figure 11: Verifying the cost model

average query response time when there are updates, which also agrees with our formula. The case

of updates onvirt WebViews (second pair of columns) has 27% higher average query response

times compared to the no updates case. When the updates are onmat-web WebViews (third pair

of columns) the increase in average query response time is even higher: 236% compared to the

no updates case. The reason for this is that the updates on themat-web WebViews are using the

DBMS, which has adverse effects on the performance ofvirt access queries. This was clearly

predicted by Eq. 9, since we included the cost of updates onmat-web WebViews in the case where

there are other types of WebViews in the system (last term in third line of formula). The reason

for such a big difference in our case is that except for putting more load on the DBMS, updates on

mat-web WebViews also compete againstvirt queries for resources inside the DBMS. In the

case ofvirt updates, this did not happen, because both the queries and the updates were referring

to the same tables.

5 Conclusions

WebView materialization can speed up the query response times of database-backed web servers

significantly. However, the multi-tiered architecture of typical web servers and the need for online

updates raise new issues, when compared to the view selection problem in data warehouses. In this

paper, we compared three materialization policies: virtual (virt ), materialized inside the DBMS

(mat-db ) and materialized at the web server (mat-web ), both analytically and quantitatively.

We developed a detailed cost model that takes into consideration the parallelism inherent in real

systems, and examined the effects of each policy on the staleness of WebViews and on the query

23



response times. We also implemented an industrial strength database-backed web server (WebMat)

and run extensive experiments.

The results from our experiments show that themat-web policy scales better than the other

two, giving at least 10 times faster query response times, since it avoids going to the DBMS on

every access request. This is true even under high access / update workloads, which makes the

mat-web policy the preferred choice on heavily loaded servers. On the other hand, themat-db

policy was better than thevirt policy only for a very limited number of cases: when the number

of WebViews was small (100) or when the update rates were low (<5 updates/sec). Even for cases

where the queries are expensive, precomputing them using themat-db policy usually leads to a

decrease in performance (compared to thevirt case) except for when the number of WebViews

is small, or when there are no updates.
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